UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

October 2010 3 hours

Instructions: Answer completely as many questions as you can. More credit will be given for a complete solution than for several partial solutions.

- (1) Find all ring homomorphisms $f: \mathbb{Z} \to \mathbb{Z}/18\mathbb{Z}$.
- (2) For $n \geq 2$, characterize the $n \times n$ matrices over \mathbb{C} which commute only with diagonalizable matrices.
- (3) Show that any group of order 10 is either a cyclic group or a dihedral group.
- (4) (a) Let G be a group. Show that the conjugation homomorphism $c \colon G \to \operatorname{Aut}(G)$ is injective if and only if the centre of G is trivial.
 - (b) If G is simple and nonabelian, is c necessarily an isomorphism? Prove or give a counterexample.
- (5) Suppose that A and B are 4×4 matrices over \mathbb{C} with the same minimal polynomial, characteristic polynomial, and at least two distinct eigenvalues. Prove that A and B are similar. Find an example of two 5×5 matrices over \mathbb{C} with the same properties that are not similar.
- (6) Let R be an integral domain. For an R-module M, let $M^* = \operatorname{Hom}_R(M, R)$.
 - (a) Verify that the function $i_M: M \to M^{**}$ given by

$$i_M(m)(f) = f(m)$$

for $m \in M$ and $f \in M^*$ is a R-module homomorphism, for any M.

- (b) Show that i_M is injective if and only if M is torsion-free. (Assume M is finitely generated here.)
- (c) If R is a PID, show that i_M is an isomorphism if M is torsion-free.
- (d) Give an example of a ring R and R-module M for which $i_M = 0$.
- (e) Give an example of a ring R and R-module M for which i_M is injective but not surjective.
- (7) Show that, for positive integers m, n,

$$\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$$

as abelian groups, where $d = \gcd(m, n)$.

- (8) Let G be a finite group of order $504 = 2^3 \cdot 3^2 \cdot 7$
 - (a) Show that G cannot be isomorphic to a subgroup of the alternating group A_7 .
 - (b) If G is simple, determine the number of Sylow 3-subgroups.
- (9) Let E be a splitting field of $x^3 2$ over the rationals \mathbb{Q} and assume that E is a subfield of \mathbb{C} . Let $F = E \cap \mathbb{R}$ be the real subfield and note that $F = \mathbb{Q}[\sqrt[3]{2}]$.
 - (a) Show that $Gal(E/\mathbb{Q})$ contains an element σ with the property that all elements of F fixed by σ are rational.
 - (b) Let $a \in F$ and suppose $a^3 \in \mathbb{Q}$. Show that one of $a, a\sqrt[3]{2}$ or $a\sqrt[3]{4}$ is contained in \mathbb{Q} .
 - (c) Prove that $\sqrt[3]{3} \notin E$.