Algebra Qualifying Exam UWO, September 2011

Time: 3 hours. No aids are allowed. Maximum mark is 100. Justify all your steps and carefully write them down.

1. (10 marks) Let U be a unitary matrix $(U^*U = UU^* = I)$. Show that

$$\lim_{n\to\infty}\frac{I+U+U^2+\cdots+U^n}{n}=P,$$

where P is the orthogonal projection onto the subspace Ker(I-U). (Hint: use the fact that U is diagonalizable in an orthonormal basis and consider various eigenspaces of U.)

- 2. (10 marks) Let $GL_n(\mathbb{F}_q)$ denote the group of invertible n by n matrices over a finite field with q elements. Find the numbers of elements of this group.
- 3. (10 marks) The center of an algebra A is the set of all $a \in A$ such that ab = ba for all $b \in A$. Determine the center of $M_n(F)$, the algebra of n by n matrices over a field F.
- 4. (20 marks) The exponential map $\exp: M_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$, from complex matrices to invertible ones, is defined by

$$\exp(A) = \sum_{p=0}^{\infty} \frac{A^p}{p!}$$

a. Show that for any invertible matrix g and any matrix A, we have

$$\exp(gAg^{-1}) = g\exp(A)g^{-1}$$

- b. Use a) to show that any invertible matrix with *distinct* eigenvalues is the exponential of a matrix.
- c. Show that if u is a nilpotent matrix then I u is in the range of the exponential map and use this to show that the exponential map is surjective. (Hint: for the very last part you can use the Jordan canonical form theorem).

5. (10 marks) The n-th cyclotomic polynomial is defined as

$$\varphi_n(x) := \prod (x - \zeta_n)$$

where the product is taken over the set of primitive n-th roots of unity. (Recall that ζ_n is a primitive nth root of 1 if $\zeta_n^n = 1$ but $\zeta_n^i \neq 1$ for all $i \in \mathbb{N}$, i < n.) Thus for example $\varphi_1(x) = x - 1$, $\varphi_2(x) = x + 1$, $\varphi_4(x) = x^2 + 1$, . . . Show that:

- a. $x^n 1 = \prod_{d|n} \varphi_d(x)$.
- b. Deduce from a) that $\varphi_n(x) \in \mathbb{Z}[x]$.

6. (10 marks) Let $d|n, d \neq n$. Show that $\varphi_n(x)$ divides the polynomial $\frac{x^{n-1}}{x^{d-1}}$ in $\mathbb{Z}[x]$.

(Hint: Factor the polynomials $x^n - 1$, $x^d - 1$ in $\mathbb{C}[x]$.)

- 7. (10 marks) Show that a group of order 75 has a normal Sylow subgroup.
- 8. (10 marks) Let $\omega = \frac{-1}{2} + \frac{\sqrt{-3}}{2}$. Show that
 - a) $\omega^3 = 1$
 - b) The field extension $\mathbb{Q}(\omega, \sqrt[3]{5})$ is a Galois extension of \mathbb{Q} .
 - c) Determine the Galois group $Gal(\mathbb{Q}(\omega, \sqrt[3]{5})/\mathbb{Q})$.

9. (10 marks) Let R be a commutative ring with unit. Let I and J be ideals in R such that I+J=R. (I and J are called *coprime ideals*.) Show that there is a natural ring isomorphism

$$\frac{R}{I \cap J} \to \frac{R}{I} \oplus \frac{R}{J}$$

(This is an abstract form of the Chinese remainder theorem).