THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

Ph.D. Comprehensive Examination (Analysis)

September 22, 2011

3 hours

Instructions: More credit will be given for a complete solution than for several partial solutions.

(1) Prove Schwarz's theorem: Let f(z) be analytic for $|z| \leq R$, f(0) = 0, and $|f(z)| \leq M$. Then

$$|f(z)| \le \frac{M|z|}{R}$$

- (2) Prove that $\int_0^{2\pi} \cos^{2n} \theta \, d\theta = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot (2n)} 2\pi.$
- (3) Prove that all the roots of $p(z) = z^7 5z^3 + 12$ lie between the circle |z| = 1 and |z| = 2.
- (4) Show that the function $f:\{z\in\mathbb{C}:|z|>1\}\to\mathbb{C}$ defined by

$$f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

is injective and find its image.

- (5) Let f be a holomorphic function on the open unit disc. Suppose there exists an open set R on the unit circle with the property that $\lim f(z) = 1$, as z approaches R (z is in the disc). Prove that f is identically 1.
- (6) a) Consider the series $\sum_{n=1}^{\infty} \alpha_n \beta_n$, $\alpha_n, \beta_n \in \mathbb{R}$. Prove that if $\{\alpha_n\}$ is a non-increasing sequence, and the partial sums $B_N = \sum_{n=1}^N \beta_n$ are uniformly bounded in absolute value by some L > 0, i.e., $|B_N| \leq L$, $N = 1, 2, \ldots$, then

$$S_N = \left| \sum_{n=1}^N \alpha_n \beta_n \right| \le L \cdot (|\alpha_1| + 2|\alpha_N|).$$

(*Hint*: transform the formula for S_N so that b_n are replaced by B_n .)

b) Use (i) to prove the Dirichlet test for convergence of series: the sum

$$\sum_{n=1}^{\infty} a_n b_n$$

converges whenever the sequence $B_N = \sum_{n=1}^N b_n$ is bounded, and $\{a_n\}$ is a decreasing sequence such that $\lim_{n\to\infty} a_n = 0$.

c) Use the Dirichlet test for convergence to show that the series

$$\sum_{n=1}^{\infty} \frac{1}{n} \sin n$$

converges. (Hint: use $2 \sin u \sin v = \cos(u - v) - \cos(u + v)$.)

(7) Let f(x) be a differentiable function of one real variable defined for x > 0. Suppose that for all x > 0

$$|f(x)| \le \frac{C}{x^k},$$

where C > 0, and $k \ge 0$. Further, assume that k is the best possible rate of growth for f, i.e., the inequality does not hold for any smaller values of k (and any C > 0). Finally, suppose that the same estimate holds for |f'(x)| possibly with a different constant C, but the same k. Prove that

$$\lim_{x\to 0^+} f(x)$$

exists.

(8) Let X be the metric space of continuous functions on the interval [0,1] with the metric defined as

$$d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)|,$$

and let Y be the metric space defined on the same collection of functions but with the metric

$$\rho(f,g) = \left(\int_0^1 |f(x) - g(x)|^2 dx \right)^{1/2}.$$

Show that X is a complete metric space, while Y is a metric space which is not complete.