ALGEBRA QUALIFYING EXAM

UWO, SPRING 2011

Time: 180min: no aids allowed. All answers must be justified unless stated otherwise. They will be graded according to correctness, completeness, relevance and clarity of presentation.

 $\mathbb{C}^{n\times n}$ denotes the ring of complex $n\times n$ -matrices.

- (1) Let $A \in \mathbb{C}^{n \times n}$. How can one read off the degree of the minimal polynomial of A from the Jordan canonical form of A?
- (2) Consider a (two-sided) ideal $I \in \mathbb{C}^{n \times n}$. Show that I = 0 or $I = \mathbb{C}^{n \times n}$.
- (3) Let V be a finite-dimensional \mathbb{Q} -vector space, and $A \colon V \to V$ a linear map such that $A^5 = \mathrm{id}_V$. Assume further that A has no fixed point apart from $0 \in V$. Prove that $\dim V$ is divisible by 4.
- (4) Determine all n such that the ring \mathbb{Z}_n has exactly 12 invertible elements.
- (5) Give an example of a free module M over some commutative ring R and a submodule $N \subset M$ that is torsion-free, but not free. (Justify why N is not free.)
- (6) Let R be an integral domain.
 - (a) Define the field of fractions Quot(R) of R and the canonical morphism $\varphi_R \colon R \to Quot(R)$.
 - (b) When is φ_R an isomorphism? (Justify!)
- (7) Let G be a group and $H \triangleleft G$. Show that if H and G/H are soluble, then so is G.
- (8) Show that any group of order 91 is cyclic.
- (9) Determine the number of conjugacy classes in the symmetric group S_5 and the number of elements in each class.

- (10) Let F be a field and G be a finite subgroup of the multiplicative group $F \setminus \{0\}$. Show that G is cyclic.
- (11) State and prove Eisenstein's irreducibility criterion.
- (12) Let p be a prime, and let m and n be two positive integers such that m divides n.
 - (a) Explain why \$\mathbb{F}_{p^n}\$ is a subfield of \$\mathbb{F}_{p^n}\$.
 (b) Compute \$\mathrm{Gal}(\mathbb{F}_{p^n}/\mathrm{F}_{p^m})\$.