THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

Ph.D. Comprehensive Examination (Analysis)

May 4, 2011 3 hours

Instructions: Answer as many questions as you can. More credit will be given for a complete solution than for several partial solutions.

1. Let

$$T_n = \left\{ (x_1, y_1, x_2, y_2, \dots, x_n, y_n) \in [0, \infty)^{2n} : \sum_{k=1}^n \max(x_n, y_n)^2 \le 1 \right\}$$

and let α_n be the 2n-dimensional volume of T_n . State and prove a simple formula for α_n in terms of n.

2. Let h be a real-valued, continuous, non-negative, non-increasing function on $[0, \infty)$. For $n = 1, 2, 3, \ldots$, define h_n by

$$h_n(x) = n \int_x^{x+(1/n)} h(t) dt.$$

Prove that h_1, h_2, h_3, \ldots is a non-decreasing sequence of differentiable, non-negative, non-increasing functions that converges pointwise to h.

3. Let X be a bounded subset of \mathbb{R}^n and $f: X \to \mathbb{R}$ be a continuous function. Suppose that for each $y \in \mathbb{R}^n \setminus X$ there exists a $\delta_y > 0$ and a constant B_y such that $|f(x)| \leq B_y$ for all $x \in X$ such that $|x - y| < \delta_y$. Prove that f is bounded.

4. Let (T,d) and (Y,ρ) be complete metric spaces. Suppose S is a subset of $T, f: S \to Y$ is uniformly continuous, and t is in the closure of S but not in S. Prove that f extends to a continuous function $g: S \cup \{t\} \to Y$. That is, prove that there exists $g \in Y$ such that

$$g(s) = \begin{cases} f(s), & s \in S \\ y, & s = t. \end{cases}$$

is continuous at I.

5. Expand $\frac{1}{(z-1)(z-2)}$ in a Laurent series centered at z=0 and converging in the annulus 1<|z|<2.

- 6. Evaluate $\int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} \, d\theta.$
- 7. Fix $n \geq 1$, r > 0, and $\lambda = \rho e^{i\phi}$. What is the maximum modulus of $z^n + \lambda$ over the disc $|z| \leq r$? Where does $z^n + \lambda$ attain its maximum modulus over the disc?
- 8. Show that the image of a nonconstant entire function is dense in \mathbb{C} .