1. (10 points) Let \(R \) be a commutative ring with \(1 \neq 0 \). Suppose that \(R \) has only two ideals. Show that \(R \) is a field.

2. (10 points) Denote by \(M_{2 \times 2}(\mathbb{C}) \) the 4 dimensional complex vector space of \(2 \times 2 \) matrices with complex coefficients. Let \(V \) be a \(\mathbb{C} \)-subspace of \(M_{2 \times 2}(\mathbb{C}) \). Suppose that \(V \) consists of commuting matrices. Show that \(\dim V \leq 2 \).

3. (10 points) Consider a surjective homomorphism \(q : G' \rightarrow G \) of groups. Suppose that \(q \) has a section, i.e. there is a group homomorphism \(s : G \rightarrow G' \) such that \(q \circ s = 1_G \). Here \(1_G \) is the identity homomorphism. Show that, \(G' \) is a semi-direct product. More precisely show that

\[
G' \cong \ker(q) \rtimes G.
\]

4. (10 points) (a) (4 points) Suppose that we have an algebraic field extension \(L/K \). Define what it means for \(L/K \) to be normal.

(b) (3 points) Give an example of a finite extension that is not normal. (Remember to justify your example.)

(c) (4 points) Prove or disprove: Suppose that \(L/K \) and \(M/L \) are finite normal extensions. Then \(M/K \) is normal.

5. (10 points) Let \(\mathbb{F} \) be a finite field with \(p \) elements, with \(p \) prime. Choose \(\alpha \in \mathbb{F} \) with \(\alpha \neq 0 \). Consider the polynomial

\[
X^p - X + \alpha.
\]

(Such a polynomial is called an Artin-Schreier polynomial, although this fact is not important for the question.) Show that this polynomial is irreducible. (Hint: observe that the polynomial is invariant under the transformation \(X \mapsto X + b \).)

6. (10 points) (a) (3 points) Produce a table of abelian groups of order 8 so that every abelian group of order 8 is isomorphic to exactly one group in your table. (You do not need to justify your answer.)
(b) (7 points) How many subgroups of order 4 does the group \(\mathbb{Z}/8 \oplus \mathbb{Z}/4 \oplus \mathbb{Z}/2 \) have. You should fully and CLEARLY justify your answer. (You will be marked on clarity of your solution!)

7. (10 points) Does there exist a group of order \(5^3 \) whose center has order \(5^2 \)? (Note : Yes or No answers will receive no credit. Make sure that you give adequate justification for your answer.)

8. (10 points) (a) (2 points) Let \(\mathbb{F} \) be finite field and denote by \(\mathbb{F}^* \) the group of non-zero elements of \(\mathbb{F} \) under multiplication. Show that \(\mathbb{F}^* \) is cyclic. (Hint : Let \(d \) be maximal so that there is an \(x \in \mathbb{F}^* \) with \(\text{ord}(x) = d \). Here \(\text{ord}(x) \) denotes the order of the element \(x \) in the group \(\mathbb{F}^* \). Consider the equation \(X^d - 1 \) in \(\mathbb{F} \).)

(b) (4 points) Consider the finite field \(\mathbb{F}_9 \) of order 9. Find all generators for the cyclic group \(\mathbb{F}_9^* \).

(c) (4 points) Use the first part to show that the field extension \(\mathbb{F}_{p^n}/\mathbb{F}_p \) is a separable extension. Here \(\mathbb{F}_{p^n} \) is the finite field with \(p^n \) elements.

9. (8 points) Let \(V \) be a finite dimensional vector space over \(\mathbb{Q} \). Consider a linear operator \(T : V \rightarrow V \) with characteristic polynomial \(c(x) \in \mathbb{Q}[x] \). Let \(f(x) \in \mathbb{Q}[x] \) be coprime to \(c(x) \). Show that the operator \(f(T) \) is invertible.

10. (7 points) Prove or disprove : Every finite group \(G \) is isomorphic to a subgroup of a dihedral group \(D_{2n} \) for some \(n \). Recall : that \(D_{2n} \) is the group of symmetries of a regular \(n \)-gon. (Remember to fully justify your answer.)

11. (5 points) Suppose that \(G \) is a finite set with an associative binary operation denoted by \(\circ \). Suppose that for all \(a, b \in G \) the equations

\[
 a \circ x = b \\
 x \circ a = b
\]

have at least one solution \(x \) in \(G \). Show that \(G \), with multiplication defined by \(\circ \), is a group.