THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENT OF MATHEMATICS

Ph. D. Comprehensive Exam (Analysis)

May 14, 2012

10:00 a.m. – 1:00 p.m.

Answer completely as many questions as you are able. More credit will be given for several complete solutions than for many partial solutions.

1. Let (A, α) , (B, β) and (C, γ) be metric spaces and define

$$d((a_1, b_1), (a_2, b_2)) = \sqrt{\alpha(a_1, a_2)^2 + \beta(b_1, b_2)^2}.$$

[2 marks] [8 marks] (a) Prove that $(A \times B, d)$ is a metric space.

(b) Suppose K is a compact subset of B, V is an open subset of C, and f is a continuous map from $(A \times B, d)$ to (C, γ) . Prove that

$$W = \{a \in A : f(a, b) \in V \text{ for all } b \in K\}$$

is an open subset of A.

[10 marks] **2.** Solve the initial value problem,

$$f'''(x) - 3f''(x) + 4f(x) = 4x + 4, \quad f(0) = 2, \ f'(0) = 4, \ f''(0) = 8$$

- **3.** Let $R = \{(u, v) \in \mathbb{R}^2 : u > 0, u^2 v > 1\}.$
- [2 marks] (a) Find the image of R under the map $(u, v) \mapsto (u^{-2}v^{-1}, u^{-1}v^{-2})$.

[8 marks]

s] (b) Evaluate

$$\iint_R \frac{1}{u^4 v^4 + u^2} \, du \, dv \, .$$

Justify your answer.

[10 marks] **4.** Suppose f is a non-negative, decreasing function on $(0, \infty)$ such that $\int_0^\infty f(x) dx < \infty$ and let $g(x) = \sum_{n=1}^\infty f(2^n x)$ for each x > 0. Prove that $g(x) < \infty$ for all x > 0, that the sum converges uniformly to g on any compact subinterval of $(0, \infty)$, and that $\int_0^\infty g(x) dx = \int_0^\infty f(x) dx$.

[10 marks] **5.** Evaluate $\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx$.

[10 marks] **6.** Find three different Laurent series for $f(z) = \frac{1}{z} + \frac{1}{(z+1)^2} + \frac{1}{z-2}$ about $z_0 = 0$ and state their regions of convergence.

7. Let γ be the limaçon $r = \frac{3}{2} + 3\cos\theta$ traversed one time counterclockwise. Evaluate the integrals

[5 marks]

[5 marks]

(a)
$$\int_{\gamma} \frac{e^{2z}}{(1+z^2)^2} dz$$

(b) $\int_{\gamma} \frac{\sin(\pi z)}{z^2 - 3z + 2} dz$.

- [10 marks] **8.** Let Ω be a non-empty open subset of \mathbb{C} , let $(f_n)_{n=1}^{\infty}$ be a sequence of functions holomorphic on Ω , and let $f : \Omega \to \mathbb{C}$ be a non-constant function. Suppose that $f_n \longrightarrow f$ $(n \to \infty)$ uniformly on every compact subset of Ω . Prove that, if $p \in \Omega$ and f(p) = 0, then for every open neighbourhood U of p in Ω there exists $N \in \mathbb{N}$ such that f_n has a zero in U for all $n \ge N$.
- [10 marks] **9. BONUS** Prove that there is no function f analytic in the disc $D = \{z \in \mathbb{C} : |z| < 2012\}$ and such that $|f(z)| \to \infty$ as $|z| \to 2012^-$.