THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

Ph.D. Comprehensive Examination Algebra

September 2013

3 hours

Instructions: Completely answer as many questions as you are able. More credit will be given for a complete solution than for several partial solutions. **Explain all answers fully.** Solutions will be graded based on correctness, completeness and clarity.

- 1. (a) Let A and B be 5×5 matrices over \mathbb{C} with the same minimal polynomial and characteristic polynomial, and with at least three distinct eigenvalues. Prove that A and B are similar.
 - (b) Find an example of two 5×5 matrices A and B over \mathbb{C} which are not similar but which have the same minimal polynomial and characteristic polynomial and two distinct eigenvalues.
- 2. Let T be a linear operator on a finite-dimensional vector space V over a field k. Prove that there exists a decomposition $V = X \oplus Y$ with X and Y T-invariant, such that $T|_X : X \to X$ is invertible and $T|_Y : Y \to Y$ is nilpotent.
- 3. (a) Define the **trace** tr(A) of an $n \times n$ matrix A, and prove that tr(AB) = tr(BA) for all $n \times n$ matrices A and B.
 - (b) For an $n \times n$ matrix A over \mathbb{C} , show that tr(A) is equal to the sum of the eigenvalues of A (repeated according to multiplicity).
 - (c) Show that if A is an $n \times n$ matrix and tr(AX) = 0 for all $n \times n$ matrices X, then A = 0.
- 4. (a) State the classification of finite abelian groups.
 - (b) List all abelian groups of order $16 \cdot 9 = 144$.
- 5. Let H be a subgroup of a group G with normalizer $N_G(H) = \{x \in G \mid x^{-1}Hx = H\}$ in G.
 - (a) Prove that $|\{x^{-1}Hx | x \in G\}| = [G : N_G(H)]$, assuming that $N_G(H)$ has finite index in G.
 - (b) Prove that if H has finite index in G, then H contains a subgroup M which is of finite index and normal in G.
 - (c) Prove that if H is a proper subgroup of a finite group G, then $\bigcup_{x \in G} x^{-1} Hx$ is not the whole of G.

- 6. Recall that $\operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z})$ is the group of 2×2 matrices of determinant 1, which have entries in $\mathbb{Z}/p\mathbb{Z}$.
 - (a) Show that the order of $SL_2(\mathbb{Z}/p\mathbb{Z})$ is p(p-1)(p+1).
 - (b) Determine the number of 5-Sylow subgroups of $SL_2(\mathbb{Z}/5\mathbb{Z})$.
- 7. (a) Define what it means for a complex number to be an **algebraic integer**.
 - (b) If y is an algebraic integer, show that for some n there exists an $n \times n$ matrix A with entries in \mathbb{Z} such that AY = yY, where $Y = [1, y, y^2, \dots, y^{n-1}]^t$.
 - (c) Prove that y is an algebraic integer if and only if it is an eigenvalue of a square matrix with entries in \mathbb{Z} .
- 8. Let R be a commutative ring with unity that is not a field.
 - (a) Prove that the following conditions are equivalent.
 - (i) The sum of two non-units is a non-unit.
 - (ii) The non-unit elements form a proper ideal.
 - (iii) The ring possesses a unique maximal ideal.
 - (b) Show that R = k[[x]], where k is a field, is an example of such a ring.
- 9. Let R be a nontrivial commutative ring with unity, and let M be a free R-module with finite basis $X = \{x_1, \ldots, x_m\}$.
 - (a) Prove that every basis of M is finite.
 - (b) Use Zorn's Lemma to show that R has a maximal ideal J.
 - (c) Prove that every basis of M has m elements.
- 10. Let $F = \mathbb{Q}(\sqrt[4]{2})$ and $K = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (a) Show that the extension of K over \mathbb{Q} is Galois and compute its Galois group G. Explain fully.
 - (b) Describe the subgroup H of G corresponding to F.
 - (c) Deduce from part (b) that there is one and only one intermediate field between F and $\mathbb{Q}.$