UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

May 21, 2013

3 hours

Instructions: Answer completely as many questions as you can. More credit may be given for a complete solution than for several partial solutions.

- (1) (a) State the three Sylow Theorems.
 - (b) Use these results to prove that any group of order 65 is cyclic.
- (2) Let G be a finite group of order p^n acting on a finite set X. Prove that

 $|X| \equiv |X^G| \text{mod}(p),$ where $X^G = \{x \in X \mid gx = x \text{ for all } g \in G\}.$

- (3) (a) Define what it means for a group G to be *solvable*.
 - (b) Prove that a group G of invertible, upper-triangular matrices over the field k is solvable.
- (4) Let m be a maximal ideal of Z[X]. Prove that m is not a principal ideal of Z[X].
- (5) Consider the ring $\mathbb{Z}[X]$ of polynomials over \mathbb{Z} .
 - (a) Define what it means for $f \in \mathbb{Z}[X]$ to be *primitive*.
 - (b) Prove that if $f \in \mathbb{Z}[X]$ and $g \in \mathbb{Z}[X]$ are both primitive then $fg \in \mathbb{Z}[X]$ is also primitive.
- (6) Let n > 1 and let \mathbb{Z}_n be the ring of integer modulo n.
 - (a) Identify the units \mathbb{Z}_n^* of \mathbb{Z}_n .
 - (b) Find a formula for the cardinality $|\mathbb{Z}_n^*|$, of \mathbb{Z}_n^* , in terms of n.
 - (c) Does there exist an n such that $|\mathbb{Z}_n^*| = 14$? Why or why not?
- (7) Let V be the real vector space of functions $f : \mathbb{R} \to \mathbb{R}$ spanned by $\beta_0 = \{e^x, e^{-x}, xe^x, xe^{-x}\}$. Let $T : V \to V$ be the linear mapping given by T(f) = f'. Find the Jordan canonical form J of T and a basis β of V such that the matrix of T with respect to β is J.
- (8) Let $P_n(\mathbb{R})$ be the real vector space of polynomials of degree at most n. Let $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be defined by T(f(x)) = f(-x). Give

 $P_n(\mathbb{R})$ the inner product

$$\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

- (a) Find the minimal polynomial of T, the eigenvalues of T and a description of each eigenspace.
- (b) Prove carefully that T is self-adjoint. Is T orthogonally diagonalisable, normal, orthogonal? Justify each answer.
- (9) Let $\theta_7 \in \mathbb{C}$ be a primitive 7-th root of unity. What is the minimal polynomial of $\theta_7 + \theta_7^{-1}$ over \mathbb{Q} ? Justify your answer.
- (10) Prove that the centre of the ring of n by n matrices over a field F is $\{aI_n : a \in F\}$ where I_n is the n by n identity.
- (11) Let $f(x) = x^4 2x^2 2 \in \mathbb{Q}[X],$
 - (a) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) Find the splitting field L of f over \mathbb{Q} and its degree over \mathbb{Q} .
 - (c) Find generators and relations for the Galois group of L/\mathbb{Q} .
- (12) Let $A \in M_{nn}(\mathbb{C})$ have rank 1. Show that $\det(A + I) = \operatorname{tr}(A) + 1$.