Algebra Comprehensive exam September 2014 Department of Mathematics

Instructions:

- 1. There are 12 questions.
- 2. Only 10 questions will be marked. Clearly indicate which 10 you would like considered.
- 3. No books or notes may be used.
- 4. Unless otherwise indicated, give complete justifications for your solutions. Answers without appropriate reasoning will not receive credit. There will be little or no partial credit aim for complete solutions.
- 1. Does there exist a finite abelian group of order 16 with 4 elements of order 4? If such a group M exists, we know that M is isomorphic to a group of the form

$$\mathbb{Z}/m_1\mathbb{Z}\oplus\mathbb{Z}/m_2\mathbb{Z}\oplus\ldots\oplus\mathbb{Z}/m_k\mathbb{Z},$$

where $m_1 \ge m_2 \ge \cdots \ge m_k$. What are k and m_i , and are they unique?

- 2. Show that every non-zero prime ideal in a principal ideal domain R is in fact a maximal ideal.
- 3. Let p be a prime number. Let K/\mathbb{F}_p be a finite Galois extension. The purpose of this problem is to show that $\operatorname{Gal}(K/\mathbb{F}_p)$ is cyclic.
 - (a) Show that the function $F: K \to K$ given by $F(x) = x^p$ is in fact a homomorphism.
 - (b) Show that F is an automorphism fixing \mathbb{F}_p .
 - (c) Suppose that the order of F is n in $\operatorname{Gal}(K/\mathbb{F}_p)$. Show that the polynomial $X^{p^n} X$ vanishes on K.
 - (d) Conclude that $\operatorname{Gal}(K/\mathbb{F}_p)$ is cyclic of order n.
- 4. Consider the $n \times n$ real matrix

$$B = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & n-1 \end{pmatrix}.$$

In other words B is a diagonal matrix with eigenvalues -1, 1, 2, ..., n-1. Show that there is no real matrix A with $A^2 = B$.

- 5. Show that the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ is Galois of degree 4. Compute its Galois group, and make sure you completely justify your answer.
- 6. Let N be a $n \times n$ complex matrix with $N^n = 0$. Show that $det(I_n + N) = 1$.
- 7. Let p be a prime number.
 - (a) What is a Sylow p-subgroup of a finite group G.
 - (b) State, but do not prove, the Sylow theorems.
 - (c) Find a Sylow 2-subgroup of S_4 .

8. Let $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ be the homomorphism of abelian groups given by

$$f(v) = \begin{pmatrix} 2 & 1\\ 0 & 2 \end{pmatrix} v,$$

for $v \in \mathbb{Z}^2$. Describe ker(f) and coker(f) up to isomorphism as direct sums of cyclic groups. (Recall coker $(f) := \mathbb{Z}^2 / \operatorname{im}(f)$.)

- 9. (a) Prove that a n × n matrix over C satisfying A³ = I₃ can be diagonalized.
 (b) Find a field k and a 3 × 3 matrix A satisfying A² = I₃ that cannot be diagonalized.
- 10. Show that any group of order 14 is isomorphic to either a cyclic or a dihedral group.
- 11. Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4. Let L be the splitting field of f and suppose that $[L:\mathbb{Q}] = 8$. Prove or disprove: the group $G = \operatorname{Gal}(L/\mathbb{Q})$ is not abelian.
- 12. Suppose M and N are R-modules and I and J are ideals for which
 - MI = 0 and JN = 0;

•
$$I + J = R$$
.

Prove that $M \otimes_R N = 0$.