THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS Ph.D. Comprehensive Examination (Analysis)

May 14 2014

3 hours

Instructions: Justify all your answers. More credit will be given for a complete solution than for several partial solutions. Each problem is worth 10 marks.

(1) (a) Show that for all $x \in \mathbb{R}$

$$f(x) := \left(\int_0^x e^{-t^2} dt\right)^2 + \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt = \frac{\pi}{4}$$

that $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{4}$

(b) Deduce that
$$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

- (2) Given $x \in \mathbb{R}$, x > 0, let $\langle x \rangle \in [0,1)$ be the fractional part of x. For $n \in \mathbb{N}$, define $f_n(x) = \langle nx \rangle$ and consider the series $f(x) = \sum_{n \ge 1} \frac{f_n(x)}{n^2}$.
 - (a) Show that f converges uniformly on \mathbb{R} .
 - (b) For a fixed n, find the discontinuities of the function $x \mapsto f_n(x)$ by computing the one-sided limits of the function.
 - (c) Show that f is continuous at any irrational number.
 - (d) Show that f is not continuous at any rational number.
 - (e) Show that f is Riemann integrable on any bounded interval.
- (3) Let $X : \mathbb{R}^3 \to \mathbb{R}^3$ be the vector field $(2xz^3 + 6y)\mathbf{i} + (6x 2yz)\mathbf{j} + (3x^2z^2 y^2)\mathbf{k}$. Compute the line integral $\int_C X \cdot d\mathbf{r}$ from (1, -1, 1) to (2, 1, -1) where C is the curve $C(t) = (2 - \cos(\pi t), \ 1 - 2\cos(\pi t), \ 1 - 8x^2)$
- (4) Let C be the set of continuous real-valued functions on [0, 1]. Given $f, g \in C$, define

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$
 and $\rho(f,g) = \int_0^1 |f(t) - g(t)| dt$

- (a) Show that d and ρ are metrics on C.
- (b) Prove that (C, d) is complete.
- (c) Prove that the identity map id : $(C, d) \rightarrow (C, \rho)$ is continuous.
- (d) Is the identity map id : $(C, \rho) \to (C, d)$ a homeomorphism? Explain.
- (e) Show that (C, ρ) is not complete.

(5) Compute the integral

$$\int_{|z|=1/2} \frac{e^{1/z}}{1-z} \, dz.$$

(6) Let f be a holomorphic function in a disc $U_R = \{|z| < R\}, f(0) = 0$, and |f(z)| < M for all $z \in U_R$.

(a) Prove that
$$|f(z)| \leq \frac{M}{R}|z|$$
 in U_R , and that $|f'(0)| \leq \frac{M}{R}$.

(b) Show that the equality $|f'(0)| = \frac{M}{R}$ holds only if $f(z) = e^{i\alpha} \frac{M}{R} z$.

- (7) Prove that if two functions $f_1(z)$ and $f_2(z)$ are holomorphic in a domain $D \subset \mathbb{C}$, and agree on a set E which has a point of accumulation $a \in D$, then $f_1 \equiv f_2$ in D.
- (8) Let $G = \{z \in \mathbb{C} : |z| < 2, z \neq \pm 1\}$. Find all bijective conformal maps: $\phi : G \to G$.