Algebra Comprehensive Exam, October 1st 2015

Instructions: Answer completely as many questions as you can. More credit will be given for a complete, clearly written solution than for several partial solutions. Each question is of equal value.

- 1. Let A be an $n \times n$ matrix with n distinct complex eigenvalues, for an integer $n \ge 1$. Let $\operatorname{Mat}_{n \times n}$ be the vector space of $n \times n$ matrices over \mathbb{C} . Consider the linear operator $T_A : \operatorname{Mat}_{n \times n} \to \operatorname{Mat}_{n \times n}$ given by $T_A(X) = AX XA$. What is dim image T_A ? [Hint: what is ker T_A ?]
- 2. Find all abelian groups G, up to isomorphism, with the property that G has a subgroup $H \cong \mathbb{Z}/4\mathbb{Z}$ and for which $G/H \cong \mathbb{Z}/8\mathbb{Z}$.
- 3. (a) Show that the group of units in the ring $\mathbb{Z}/8\mathbb{Z}$ is not cyclic.
 - (b) Show that, if p is prime, then the group of units in $\mathbb{Z}/p\mathbb{Z}$ is cyclic.
- 4. Let F be a field, and let $G = GL_2(F)$, the group of 2×2 matrices with entries in F. Suppose $A \in G$ is an element of finite order k, for some $k \ge 1$.
 - (a) Suppose $F = \mathbb{C}$. Show that A is diagonalizable.
 - (b) Suppose $F = \mathbb{R}$. Show that A need not be diagonalizable by giving a counterexample.
 - (c) Suppose $F = \overline{\mathbb{F}}_2$, an algebraically closed field of characteristic 2. Must A be diagonalizable? Prove or disprove.
- 5. Suppose that a and b are relatively prime elements in a Unique Factorization Domain R. Show that there are no nonzero R-module homomorphisms $f: R/(a) \to R/(b)$.
- 6. Let p be a prime. Show that any group G of order p^2 is abelian.
- 7. Show that no group of order 30 is simple.
- 8. Show that the additive group \mathbb{Q} is not isomorphic to the product of two non-trivial groups.
- 9. Let F be a subfield of \mathbb{R} , and let $f(X) \in F[X]$ be irreducible with a non-real root α of absolute value one. Show that $1/\beta$ is a root of f(X) for every root $\beta \in \mathbb{C}$.
- 10. Let E/F be a field extension. Let $f(X) \in F[X]$ be irreducible and $\alpha_1, \alpha_2, \beta_1, \beta_2 \in E$ be roots of f(X). Assume $\alpha_1 \neq \alpha_2, \beta_1 \neq \beta_2$.
 - (a) Show that $F(\alpha_1)$ and $F(\alpha_2)$ are isomorphic extensions of F.
 - (b) Are $F(\alpha_1, \alpha_2)$ and $F(\beta_1, \beta_2)$ always isomorphic extensions of F?
- 11. Let E be the splitting field of $f(X) = X^4 14X^2 + 9$ over \mathbb{Q} .
 - 1. Compute Gal (E/\mathbb{Q}) . (Hint: The roots of f(X) are $\pm\sqrt{2}\pm\sqrt{5}$.)
 - 2. Verify that each subgroup of $\operatorname{Gal}(E/\mathbb{Q})$ is the Galois group $\operatorname{Gal}(E/L)$ of an intermediate field $\mathbb{Q} \subset L \subset E$.