1. (a) Define Lipschitz continuous functions on the interval $I = [-1, 1]$.
 (b) Show that the uniform limit of Lipschitz continuous functions on the interval I may not be Lipschitz continuous.
 (c) Show that if a sequence $(f_m(x))_{m=1}^\infty$ converges uniformly on I, and all $f_m(x)$ are Lipschitz continuous with a uniform constant K, then the limit is also Lipschitz continuous with the constant K.

2. Let $f(x)$ be a function defined on $(0, 1]$ such that f is Riemann integrable on $[c, 1]$ for any $0 < c < 1$. Define
 \[\int_0^1 f(x) \, dx = \lim_{c \to 0^+} \int_c^1 f(x) \, dx. \]
 (a) Show that if $f(x)$ is Riemann integrable on $[0, 1]$, then the standard definition of $\int_0^1 f(x) \, dx$ using Riemann sums and the definition given above agree.
 (b) Give example of a function which is not Riemann integrable on $[0, 1]$, but the limit above exists.

3. Consider the function
 \[F(x) = \begin{cases}
 \frac{xy^3}{x^2 + y^4}, & (x, y) \neq (0, 0), \\
 0, & (x, y) = (0, 0).
 \end{cases} \]
 (a) Show that $F(x, y)$ is continuous at the origin.
 (b) Define what it means for a function $f(x, y)$ to be differentiable at $(0, 0)$.
 (c) Show that $F(x, y)$ above is not differentiable at the origin.
4. Let $I = (-1, 1)$ be the open subinterval of \mathbb{R}. Let \mathcal{S} be the space of bounded continuous functions on I. Define

$$\rho(f, g) = \sup_{x \in I} |f(x) - g(x)|, \quad f, g \in \mathcal{S}. $$

(a) Prove that ρ is a metric on \mathcal{S} and that (\mathcal{S}, ρ) is a complete metric space.

(b) Prove that the map $H : (\mathcal{S}, \rho) \to \mathbb{R}$, given by $H(f) = f(0)$, is continuous.

5. Is there a polynomial $P(z)$ such that $P(z) \cdot e^{1/z}$ is an entire function? Justify your answer (i.e., give an example or prove it does not exist).

6. Evaluate

$$\int_{-\infty}^{\infty} \frac{x^2}{1 + x^4} \, dx. $$

7. Let f be a non-constant entire function. Show that the image of f is dense in \mathbb{C}.

8. Let $(z_n)_{n=1}^{\infty}$ be a sequence of distinct complex numbers such that the series $\sum_{n=1}^{\infty} \frac{1}{|z_n|^3}$ converges, and let

$$f(z) = \sum_{n=1}^{\infty} \left(\frac{1}{(z - z_n)^2} - \frac{1}{2z_n^2} \right).$$

Prove that f is meromorphic on \mathbb{C} and find all its poles.