UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

May 22, 2015

3 hours

Instructions: Answer completely as many questions as you can. More credit may be given for a complete solution than for several partial solutions.

- (1) Let (V, <, >) be an inner product space over \mathbb{C} , and let $T: V \to V$ be a linear operator.
 - (a) Define the *adjoint* $T^*: V \to V$ (just say how it is defined, not why it exists).
 - (b) Suppose that $W \subseteq V$ is a T- invariant subspace. Show that W^{\perp} is T^* -invariant.
 - (c) Show that if λ is an eigenvalue of T then $\overline{\lambda}$ is an eigenvalue of T^* .

(2) Let
$$A = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 0 & 2 & 0 \\ 4 & 0 & 1 & 2 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find E_{λ} (the eigenspace of λ) for each eigenvalue λ of A.
- (c) Find the Jordan canonical form of A.

(3) Let $A = \begin{pmatrix} 4 & 3 & 5 \\ 2 & 4 & 2 \\ 3 & 1 & 3 \end{pmatrix}$. Find $d_1, d_2, d_3 \in \mathbb{Z}$ such that $d_1 | d_2 | d_3$ and A is equivalent to $D = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$.

- (4) Examples and counter-examples.
 - (a) Give an example of a U.F.D. that is not a P.I.D.
 - (b) Give an example of a linear transformation $\alpha : V \to V$ over a field k such that V is cyclic as a k[x]-module, but decomposable as a k[x]-module.

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

(c) Let
$$a = 3 + 4i, b = 1 + 2i \in \mathbb{Z}[i]$$
. Write

 $\mathbf{2}$

$$a = bq + r$$

where $r, q \in \mathbb{Z}[i]$, and N(r) < N(b) = 5. (Here $N(a + bi) = a^2 + b^2$ is the complex norm.)

- (5) Let V be an n-dimensional vector space over \mathbb{C} and let $f: V \to V$ be a linear transformation. Prove that there exists a basis $B = \{v_1, ..., v_n\}$ of V such that f is in upper-triangular form with respect to B.
- (6) (a) Let A be a commutative ring with $1 \in A$. Prove that A has a maximal proper ideal M.
 - (b) Prove that the rings $F[x, y]/(y^2 x)$ and $F[x, y]/(y^2 x^2)$ are not isomorphic over any field F.
- (7) (a) Show that the polynomial f(x) = X⁴ 5 is irreducible over Q.
 (b) Find the splitting field K of f(x) over Q.
 - (c) Find the Galois group of K/F.
- (8) Let p be a prime number and \mathbb{F}_p be a field with p-elements. Let $GL_4(\mathbb{F}_p)$ be a group of invertible matrices over \mathbb{F}_p of size 4 by 4, and let $U_4(\mathbb{F}_p)$ be an upper triangular subgroup of $GL_4(\mathbb{F}_p)$ with all diagonal elements equal to 1. Show that $U_4(\mathbb{F}_p)$ is a p-Sylow subgroup of $GL_4(\mathbb{F}_p)$.
- (9) Let p be a prime number and let \mathbb{F}_p be a field with p-elements. Determine the number of quadratic monic irreducible polynomials over \mathbb{F}_p . (A monic polynomial means that its leading coefficient is 1.)
- (10) Let G be a group with 21 elements. Show that:
 - (a) G has a unique Sylow subgroup P of order 7.
 - (b) P is a normal subgroup of G and that there exists an element $\sigma \in G$ such that $\sigma \neq 1$ and $\sigma^3 = 1$.
 - (c) Assume that G as above, is not cyclic. Show that G is a semidirect product $G = P \rtimes \{1, \sigma, \sigma^2\}$ where $P = \{1, y, \dots, y^6\}$ and $\sigma \tau \sigma^{-1} = y^2$, or $\sigma \tau \sigma^{-1} = y^4$.
 - (d) Show that both groups G described in (c), are isomorphic.
- (11) (a) Show that if group G we have $\sigma^2 = 1$ for all $\sigma \in G$, then G is abelian.
 - (b) Let p be an odd prime number and let \mathbb{F}_p be a field with p-elements. Consider the group $G = U_3(\mathbb{F}_p)$. This means that G is a group of all 3×3 upper triangular invertible matrices over \mathbb{F}_p with diagonal elements all equal to 1. Show that $\sigma^p = 1$ for all $\sigma \in G$, but G is not an abelian group.

UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS 3

- (12) Decide which of the following extensions of $\mathbb Q$ are Galois extensions of \mathbb{Q} , and explain your answer carefully.
 - (a) $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$.
 - (b) $\mathbb{Q}(\sqrt{2}, \sqrt{-1})(\sqrt{1+\sqrt{2}})/\mathbb{Q}.$ (c) $\mathbb{Q}(\sqrt{2}, \sqrt{-1})/\mathbb{Q}.$ (d) $\mathbb{Q}(\sqrt{7})(\sqrt{1+\sqrt{7}})/\mathbb{Q}.$