UNIVERSITY OF WESTERN ONTARIO
DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

May 22, 2015 3 hours

Instructions: Answer completely as many questions as you can. More credit may be given for a complete solution than for several partial solutions.

(1) Let \((V, <, >)\) be an inner product space over \(\mathbb{C}\), and let \(T : V \rightarrow V\) be a linear operator.

(a) Define the adjoint \(T^* : V \rightarrow V\) (just say how it is defined, not why it exists).

(b) Suppose that \(W \subseteq V\) is a \(T\)-invariant subspace. Show that \(W^\perp\) is \(T^*\)-invariant.

(c) Show that if \(\lambda\) is an eigenvalue of \(T\) then \(\overline{\lambda}\) is an eigenvalue of \(T^*\).

(2) Let \(A = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 0 & 2 & 0 \\ 4 & 0 & 1 & 2 \end{pmatrix}\).

(a) Find the characteristic polynomial of \(A\).

(b) Find \(E_\lambda\) (the eigenspace of \(\lambda\)) for each eigenvalue \(\lambda\) of \(A\).

(c) Find the Jordan canonical form of \(A\).

(3) Let \(A = \begin{pmatrix} 4 & 3 & 5 \\ 2 & 4 & 2 \\ 3 & 1 & 3 \end{pmatrix}\). Find \(d_1, d_2, d_3 \in \mathbb{Z}\) such that \(d_1|d_2|d_3\) and \(A\) is equivalent to \(D = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}\).

(4) Examples and counter-examples.

(a) Give an example of a \(U.F.D.\) that is not a \(P.I.D.\).

(b) Give an example of a linear transformation \(\alpha : V \rightarrow V\) over a field \(k\) such that \(V\) is cyclic as a \(k[x]\)-module, but decomposable as a \(k[x]\)-module.
(c) Let $a = 3 + 4i, b = 1 + 2i \in \mathbb{Z}[i]$. Write

$$a = bq + r$$

where $r, q \in \mathbb{Z}[i]$, and $N(r) < N(b) = 5$. (Here $N(a + bi) = a^2 + b^2$ is the complex norm.)

(5) Let V be an n-dimensional vector space over \mathbb{C} and let $f : V \to V$ be a linear transformation. Prove that there exists a basis $B = \{v_1, ..., v_n\}$ of V such that f is in upper-triangular form with respect to B.

(6) (a) Let A be a commutative ring with $1 \in A$. Prove that A has a maximal proper ideal M.

(b) Prove that the rings $F[x, y]/(y^2 - x)$ and $F[x, y]/(y^2 - x^2)$ are not isomorphic over any field F.

(7) (a) Show that the polynomial $f(x) = x^4 - 5$ is irreducible over \mathbb{Q}.

(b) Find the splitting field K of $f(x)$ over \mathbb{Q}.

(c) Find the Galois group of K/F.

(8) Let p be a prime number and \mathbb{F}_p be a field with p-elements. Let $GL_4(\mathbb{F}_p)$ be a group of invertible matrices over \mathbb{F}_p of size 4 by 4, and let $U_4(\mathbb{F}_p)$ be an upper triangular subgroup of $GL_4(\mathbb{F}_p)$ with all diagonal elements equal to 1. Show that $U_4(\mathbb{F}_p)$ is a p-Sylow subgroup of $GL_4(\mathbb{F}_p)$.

(9) Let p be a prime number and let \mathbb{F}_p be a field with p-elements. Determine the number of quadratic monic irreducible polynomials over \mathbb{F}_p. (A monic polynomial means that its leading coefficient is 1.)

(10) Let G be a group with 21 elements. Show that:

(a) G has a unique Sylow subgroup P of order 7.

(b) P is a normal subgroup of G and that there exists an element $\sigma \in G$ such that $\sigma \neq 1$ and $\sigma^3 = 1$.

(c) Assume that G as above, is not cyclic. Show that G is a semi-direct product $G = P \rtimes \{1, \sigma, \sigma^2\}$ where $P = \{1, y, \ldots, y^6\}$ and $\sigma \tau \sigma^{-1} = y^2$, or $\sigma \tau \sigma^{-1} = y^4$.

(d) Show that both groups G described in (c), are isomorphic.

(11) (a) Show that if group G we have $\sigma^2 = 1$ for all $\sigma \in G$, then G is abelian.

(b) Let p be an odd prime number and let \mathbb{F}_p be a field with p-elements. Consider the group $G = U_3(\mathbb{F}_p)$. This means that G is a group of all 3×3 upper triangular invertible matrices over \mathbb{F}_p with diagonal elements all equal to 1. Show that $\sigma^p = 1$ for all $\sigma \in G$, but G is not an abelian group.
(12) Decide which of the following extensions of \mathbb{Q} are Galois extensions of \mathbb{Q}, and explain your answer carefully.

(a) $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$.

(b) $\mathbb{Q}(\sqrt{2}, \sqrt{-1})(\sqrt{1 + \sqrt{2}})/\mathbb{Q}$.

(c) $\mathbb{Q}(\sqrt{2}, \sqrt{-1})/\mathbb{Q}$.

(d) $\mathbb{Q}(\sqrt{7})(\sqrt{1 + \sqrt{7}})/\mathbb{Q}$.