UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

September 2016

3 hours

Instructions: Answer completely as many questions as you can. More credit may be given for a complete solution than for several partial solutions. Make sure that you justify your answers carefully. The credit an answer receives depends both on mathematical correctness and on quality of exposition.

- (1) (a) List all abelian groups (up to isomorphism) of order 200 that have no elements of order 40.
 - (b) Explain why the number of isomorphism classes of abelian groups of order p^n is independent of the prime p.
- (2) Let p be a prime number. Assume that G is a finite group such that every element of G has order p^n for some $n \ge 0$. Prove that G has order p^N for some $N \ge 0$. State clearly which theorems (from finite group theory) you use in your proof.
- (3) (a) Find the splitting field K of the given polynomial f over k in each case. In each case express your answer in the form $k(x_1, \ldots, x_n)$ for appropriate complex numbers $\{x_i\}$.
 - (i) $f(x) = x^3 3$ over $k = \mathbb{Q}$.
 - (ii) $f(x) = x^2 + 3$ over $k = \mathbb{R}$.
 - (iii) $f(x) = x^n + 1$ over $k = \mathbb{Q}$.
 - (b) Find the degree of each splitting field in (i), (ii) and (iii) and identify the Galois group G = Gal(K/k) in each case.
- (4) Let $k \subseteq K$ be a finite extension of fields.
 - (a) Define what it means for $k \subseteq K$ to be *separable*.
 - (b) Define what it means for $k \subseteq K$ to be *normal*.
 - (c) Find a finite extension L of \mathbb{Q} that is not normal.
 - (d) Does there exist a finite extension field of Q that is not separable? Why or why not?
- (5) Let $f(x) = x^3 2x^2 + 3x 5$. Assume that f has roots α , β and γ . Calculate $\alpha^2 + \beta^2 + \gamma^2$.

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

- (6) Let A be an $n \times m$ -matrix with entries in some field F.
 - (a) Define what a reduced row-echelon form of A is.
 - (b) Show that the reduced row-echelon form of A is unique. Hint: Assume that there are two distinct reduced row-echelon forms and look at the first column where they differ.
- (7) Let $A \in \mathbb{C}^{n \times n}$. Show that the Jordan canonical form of A has exactly one Jordan block per eigenvalue if and only if there is no non-zero polynomial $p \in \mathbb{C}[x]$ of degree less than n satisfying p(A) = 0.
- (8) Let R be a commutative ring (with unit) having only one maximal ideal \mathfrak{m} . Show that any element not in \mathfrak{m} is invertible.
- (9) Let R be a PID, and M be a finitely generated projective module over R. Show that M is free.
- (10) Let R be a Noetherian ring, and let M and N be finitely generated R-modules. Show that the R-module $\operatorname{Hom}_R(M, N)$ is finitely generated.