Algebra Comprehensive exam September 2017 Department of Mathematics

Instructions:

- 1. There are 9 questions.
- 2. No books, notes or other resources may be used.
- 3. Unless otherwise indicated, give complete justifications for your solutions. Answers without appropriate reasoning will not receive credit. There will be little or no partial credit aim for complete solutions.
- 1. (a) Find a generator for the group of units $(\mathbb{Z}/17\mathbb{Z})^{\times}$.
 - (b) Prove that \mathbb{Q}^{\times} is not a cyclic group.
- 2. Explicitly construct a Sylow 2-subgroup in the symmetric group S_6 .
- 3. Let V be a complex vector space. Say a subspace $W \subseteq V$ has finite codimension if and only if the quotient space V/W has finite dimension, that is, $[V:W] = \dim_{\mathbb{C}}(V/W)$ is finite. Let $W_1, W_2 \subseteq V$ be subspaces.
 - (a) Prove: if W_1, W_2 have finite codimension, then $W_1 \cap W_2$ has finite codimension.
 - (b) Show that $[V: W_1 \cap W_2] = [V: W_1] + [W_1: W_1 \cap W_2].$
- 4. Let V be a 2-dimensional, real vector space, and $T: V \to V$ an orthogonal linear transformation. Prove that T is diagonalizable over \mathbb{C} .
- 5. Recall that a ring element r is *nilpotent* if $r^n = 0$ for some positive integer n, and *unipotent* if r 1 is nilpotent. Characterize the nilpotent elements of $\mathbb{Z}/72\mathbb{Z}$.
- 6. Construct three examples each (if possible) of upper triangular 3×3 real matrices A, B, C, D satisfying the following. If an example does not exist, briefly explain why.
 - (a) A is diagonal and has characteristic polynomial $\lambda^2(\lambda 1)$.
 - (b) B has minimal polynomial $\lambda^2(\lambda 1)$ and characteristic polynomial $\lambda(\lambda 1)^2$.
 - (c) C is orthogonal but is not a scalar multiple of the identity matrix.
 - (d) D is nilpotent and unipotent.
- 7. Let F be the splitting field of $x^4 + 2x^2 + 2 \in \mathbb{Q}[x]$. Compute the Galois group of the extension F/\mathbb{Q} .
- 8. Suppose A is a real matrix with characteristic polynomial $(\lambda^2 + 1)(\lambda^2 + 2)$. Describe all real subspaces $V \subseteq \mathbb{R}^4$ satisfying $A(V) \subseteq V$.
- 9. Construct the finite field \mathbb{F}_{5^2} , and find an element of the multiplicative group $\mathbb{F}_{5^2}^{\times}$ which is not a cube. Explain why your constructions are valid.