Department of Mathematics Western University

PhD Comprehensive Examination Part I: Analysis

October 5, 2017 2:00-5:00 p.m.

Instructions: There are seven questions. Answer as many questions as you can. More credit will be given for a complete solution than for several partial solutions.

- 1. Suppose $u, v \in (0, 1)$.
- (a) Prove that x and y are well defined as functions of (u, v) by

 $\sin(ux) = v$, $0 < ux < \pi/2$, and $\sin(uy) = v$, $\pi/2 < uy < \pi$.

(b) Sketch the following three subsets of \mathbb{R}^2 on the same (large, clearly labeled) xy-axes: $A = \{(x, y) : u = 1/2, v \in (0, 1)\}, B = \{(x, y) : u \in (0, 1), v = 1/2\}$ and $C = \{(x, y) : u, v \in (0, 1)\}.$

- 2. Let $p(z) = az^n + z + 1$ with $n \ge 2$ and $a \in \mathbb{C}$.
- (a) Suppose $|a| < 1/2^n$. Prove that p has exactly one root in the disc |z| < 2.
- (b) Show that for any $a \in \mathbb{C}$, p has at least one root in the disc $|z| \leq 2$.
- 3. Let x_1, x_2, \ldots be real numbers and define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \inf_{k=1,2,\ldots} k|x x_k|$.
- (a) Show that if the sequence $\{x_n\}_{n=1}^{\infty}$ has no convergent subsequence then f is continuous.
- (b) Find a sequence x_1, x_2, \ldots such that f is not continuous.
- 4. Let k, m, M be positive constants.

(a) Suppose F is a continuous function satisfying $|F(Re^{it})| \leq \frac{M}{R^k}$ when R > 0 and $0 \leq t \leq \pi$. Prove that

$$\lim_{R \to \infty} \int_{\Gamma} e^{imz} F(z) \, dz = 0$$

where Γ is the semicircular arc $\{Re^{it}: 0 \le t \le \pi\}$.

(b) Show that
$$\int_0^\infty \frac{\cos(mx)}{x^2 + 1} \, dx = \frac{\pi}{2} e^{-m}.$$

5. Let (M, d) be a metric space and let X be the collection of all Cauchy sequences in M. For $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$ in X let $A(x, y) = (x_1, y_1, x_2, y_2, x_3, y_3, ...)$. We say $x \sim y$ provided $A(x, y) \in X$.

(a) Prove that \sim is an equivalence relation on X.

(b) Fix $x \in X$ and $m \in M$ and let y be the constant sequence (m, m, m, ...). Show that x converges to m if and only if $x \sim y$.

6. Let Ω be a connected open subset of \mathbb{C} and $f: \Omega \to \Omega$ be a holomorphic map such that $f \circ f = f$. Show that either f is the identity map on Ω or f is constant.

7. For each positive integer n, define $f_n: (0,\infty) \to \mathbb{R}$ by $f_n(x) = \int_0^1 t^{x-1}(1-t)^{n-1} dt$.

(a) Prove that for each x > 0, $\lim_{n \to \infty} f_n(x) = 0$.

(b) Prove that $\{f_n\}_{n=1}^{\infty}$ does not converge uniformly to the zero function on $(0,\infty)$.