Algebra Comprehensive exam May 2017 Department of Mathematics

Instructions:

- 1. There are 8 questions.
- 2. There are 100 marks.
- 3. No books or notes may be used.
- 4. Unless otherwise indicated, give complete justifications for your solutions. Answers without appropriate reasoning will not receive credit. There will be little or no partial credit aim for complete solutions.

Question	Points				
1	12				
2	12				
3	14				
4	12				
5	12				
6	12				
7	14				
8	12				
Total:	100				

1. (12 points) Show that $\mathbb{Z}[X]$ is not a principal ideal domain.

Solution: The ideal $\langle 2, X \rangle$ is proper, (why? students must give reason!). Suppose that $\langle 2, X \rangle = \langle f \rangle$. Then rf = X and X is irreducible. By properness we must have f = X. But X does not divide 2.

2. (12 points) Let F be a field and let M be an invertible 2×2 matrix with entries in F. Suppose that there is a positive integer so that $M^n = I_2$. Prove or disprove : M is diagonalisable.

Solution: The statement is false in positive characteristic.

3. (14 points) Consider the group homomorphism

$$\phi:\mathbb{Z}^2\to\mathbb{Z}^2$$

given by left multiplication by the matrix

$$\begin{bmatrix} 102 & 69 \\ 48 & 33 \end{bmatrix}.$$

What is $|coker(\phi)|$? (Here |X| means order (cardinality).)

Solution:	After suit	able choi	ce of basis (row/col	ops)	the matrix	of the l	homom	orphism	is
				$\begin{bmatrix} 3\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\18 \end{bmatrix}$					
			~							

The cokernel can now be read off.

4. (12 points) Consider the ring $V = \mathbb{C}[x]/(x^4 + 2x^2 + 1)$. We can view V as a finite dimensional vector space and multiplication by x gives a linear operator $V \to V$. Find the Jordan form of this operator.

Solution: Follows easily from chinese remainder theorem.

5. (12 points) Let G be a group of order p^n where p is a prime and n > 0. Suppose that G is simple. Show that n = 1.

Solution: Class equation gives non-trivial centre. We reduce to G abelian and apply the classification.

6. (12 points) Let R be an integral domain. Define what it means for $x \in R$ to be irreducible. Now suppose that x is irreducible. Prove or disprove : the ideal $\langle x \rangle = xR$ is prime.

Solution: Irreducible means that x is not zero nor a unit and if x = ab then one of a or b is a unit. The assertion is false. Take $R = k[t^2, t^3]$. In this ring t^3 is irreducible. But the ideal it generates is not prime, indeed $(t^2)^2 \in \langle t^3 \rangle$ but $t^2 \notin \langle t^3 \rangle$.

- 7. (14 points) Let $F = \mathbb{Q}(\sqrt{2}) := \{q_1 + q_2 \sqrt{2} \mid q_1, q_2 \in \mathbb{Q}\}$. Determine which field extensions $F_1/\mathbb{Q}, F_2/\mathbb{Q}_2, F_3/\mathbb{Q}$ described below, are Galois, and in the case when they are Galois, determine their Galois groups. Recall that $F(\alpha)$ means the smallest field containing F and α .
 - (1) $F_1 = F(\sqrt[4]{2}).$
 - (2) $F_2 = F(2 + \sqrt{2}).$
 - (3) $F_3 = F(1 + \sqrt{2}).$

Solution: F_2 is the only Galois extension and $\operatorname{Gal}(F_2/\mathbb{Q})$ is a cyclic group of order 4. In cases (1) and (3) the number of automorphisms F_i/\mathbb{Q} is smaller than $[F_i : \mathbb{Q}]$.

8. (12 points) Show that any group of order 21 contains a normal cyclic subgroup of order 7. Bonus Question: Determine all groups of order 21.

Solution: The Sylow theorem tells us that the number C_7 is 1 + k.7 and 1 + k.7 divides 21. Hence it is only one. Further analysis of the possible action of C_3 on C_7 shows that up to isomorphism, there are only two groups of order 21.