PhD Comprehensive Exam (Algebra) Department of Mathematics October 2024

Instructions:

- 1. You have 3 hours to complete the exam.
- 2. Little partial credit will be given. Aim for complete solutions.
- 3. Justify all your answers.
- 4. Answer questions in the spaces provided.
- 5. Skim the questions at the start so that you can focus on the ones you feel most confident about.
- 6. The exam is divided into four parts
 - (a) Linear Algebra.
 - (b) Group theory.
 - (c) Rings and Modules.
 - (d) Field theory.

Solve at **least one** problem from each part. With that said, you should try to solve as many problems as possible.

- 7. Each problem is worth 10 points.
- 8. There are eight problems.

Linear Algebra

- 1. (10 points) Let A and B be complex 6×6 matrices. Suppose that B is nilpotent, A has minimal polynomial $(x-1)^2$ and the 1-eigenspace of A is the same as the 0-eigenspace of B. Show that $B^4 = 0$.
- 2. (10 points) Let $T : \mathbb{C}^3 \to \mathbb{C}^3$ be a linear operator and let $f \in \mathbb{C}[x]$ a polynomial. Suppose that λ is an eigenvalue of f(T). Prove or disprove: there is an eigenvalue μ of T so that $\lambda = f(\mu)$.

Groups

3. (10 points) Let $G = GL_2(\mathbb{F}_p)$ where p is a prime. Note that $|G| = (p-1)^2 p(p+1)$. Show that all Sylow p-subgroups of G are conjugate to the subgroup generated by

$$C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Determine the number of Sylow p-subgroups of G. [Hint: Consider the subgroup of upper triangular matrices.]

4. (10 points) Let G be a finite simple group. Let H be a subgroup of G of index [G:H] = n with n > 2. Show that G is isomorphic to a subgroup of A_n where A_n is the alternating subgroup of S_n .

Rings and Modules

5. (10 points) Recall that an Artinian ring satisfies the descending chain condition on ideals. Show that if R is a commutative Artinian ring with identity, then any prime ideal of R is maximal.

6. (10 points) Let R be an integral domain and let M be a finitely generated module over R. Prove or disprove: if N is a submodule of M then N is finitely generated.

Fields

- 7. (10 points) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4. Assume that it has 2 real roots and 2 complex roots. Show that this implies that the Galois group of f(x) is either the dihedral group of order 8 or the symmetric group on 4 letters.
- 8. (10 points) Show that there is no $\alpha \in \mathbb{Q}(\sqrt[5]{3})$ with

$$\alpha^3 = 1 + \sqrt[5]{3}.$$