PhD Comprehensive Exam (Algebra) Department of Mathematics May 2024

Instructions:

- 1. You have 3 hours to complete the exam.
- 2. Little partial credit will be given. Aim for complete solutions.
- 3. Justify all your answers.
- 4. Answer questions in the spaces provided.
- 5. Skim the questions at the start so that you can focus on the ones you feel most confident about.
- 6. The exam is divided into four parts
 - (a) Linear Algebra.
 - (b) Group theory.
 - (c) Rings and Modules.
 - (d) Field theory.

Solve at **least one** problem from each part. With that said, you should try to solve as many problems as possible.

- 7. Each problem is worth 10 points.
- 8. There are eight problems.

Linear Algebra

1. (10 points) Let F be a field. Prove that if $M \in M_{n \times n}(F)$ can be written in the form

Α	B
0	C

where A and C are square matrices, then $det(M) = det(A) \cdot det(C)$.

2. (10 points) Let A be a 2×3 matrix with complex entries and let B be a 3×2 matrix with complex entries. Suppose that BA is similar to

0	0	0	
0	1	0	
0	0	3	
-		-	
(1	())	
) :	().	
()	· ·	')	

Prove that AB is similar to

Groups

- 3. (10 points) Show that if a group G has a conjugacy class with two elements, then G is not simple.
- 4. (10 points) Let G be a group of order 66. Show that there is an $x \in G$ with |x| = 33. Rings and Modules

- 5. (10 points) Suppose that A is an integral domain containing a subring K such that K is a field, and A is a finite dimensional vector space over K. Prove that A is a field.
- 6. (10 points) Let R be a principal ideal domain and let M be a non-zero R-module. Show that there is a submodule $N \subseteq M$ that is isomorphic to R/p where $p \subseteq R$ is a prime ideal. Note that M need not be finitely generated so you may not apply the classification theorem for finitely generated modules over a principal ideal domain.

Fields

- 7. (10 points) Show that any finite extension of fields K/F is algebraic. Is the converse statement true? Make sure to carefully justify any claims made.
- 8. (10 points) Let $p \in \mathbb{Z}$ be a postive prime number. Consider the Galois extension of finite fields $\mathbb{F}_{p^2}/\mathbb{F}_p$. Let $\theta \in \mathbb{F}_{p^2}$ be a generator for the cyclic group $\mathbb{F}_{p^2}^{\times} := \mathbb{F}_{p^2} \setminus \{0\}$. Prove or disprove: the element $N_{\mathbb{F}_{p^2}/\mathbb{F}_p}(\theta)$ is a generator for the cyclic group \mathbb{F}_p^{\times} .

Recall that $N_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ is the field norm.