PhD Comprehensive Exam (Algebra) Department of Mathematics May 2025

Instructions:

- 1. You have 3 hours to complete the exam.
- 2. Little partial credit will be given. Aim for complete solutions.
- 3. Justify all your answers.
- 4. Answer questions in the spaces provided.
- 5. Skim the questions at the start so that you can focus on the ones you feel most confident about.
- 6. The exam is divided into four parts
 - (a) Linear Algebra.
 - (b) Group theory.
 - (c) Rings and Modules.
 - (d) Field theory.

Solve at **least one** problem from each part. With that said, you should try to solve as many problems as possible.

- 7. Each problem is worth 10 points.
- 8. There are eight problems.

Linear Algebra

- 1. (10 points) Let A be a real symmetric $n \times n$ matrix. Show there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors for A. Deduce that A is orthogonally diagonalizable.
- 2. (10 points) Let V be a finite dimensional \mathbb{Q} vector space and let $T:V\to V$ be a linear operator. We say that a subspace $W\subseteq V$ is invariant if $T(W)\subseteq W$. We say that T is irreducible if the only invariant subspaces are V and the zero subspace.

Show that if T is irreducible then the minimal polynomial of T is an irreducible polynomial in $\mathbb{Q}[x]$.

Groups

3. (10 points) Show that the symmetric group S_5 has 6 Sylow 5-subgroups.

 S_5 acts on its set of Sylow 5-subgroups P_5 by conjugation. Determine the homomorphism $\varphi: S_5 \to S_6$ induced by this group action on a set of generators for S_5 .

Use this to show that S_6 has 2 non-conjugate subgroups isomorphic to S_5 .

Hint: S_5 can be generated by a 5-cycle and a transposition.

4. (10 points) Let G be the group of upper triangular matrices in $GL_2(\mathbb{Z}/11\mathbb{Z})$. Let n_5 be the number of 5-Sylow subgroups of G. What is the value of n_5 ?

Rings and Modules

5. (10 points) Let F be a field and $R = M_{nn}(F)$ be the F-algebra of $n \times n$ matrices.

Show that $R = \bigoplus_{i=1}^n L_i$ is a direct sum of n simple left ideals L_i . For each $i \geq 2$, show that $L_i \cong L_1$ as R-modules.

Moreover, show that any simple R-module M is isomorphic to L_1 as an R-module.

Hint: Consider the matrices $E_{ij} \in M_{nn}(F)$ with a 1 in the (i,j) position and 0 in all other entries.

6. (10 points) Let R be a commutative ring with $0 \neq 1$. Let M be an R-module. For $m \in M$ we write $\operatorname{Ann}_R(m) \subseteq R$ for the annihilator ideal of m.

Suppose that for every $m', m \in M$ with $m', m \neq 0$ we have that $\operatorname{Ann}_R(m) = \operatorname{Ann}_R(m')$.

Prove or disprove: For a non-zero $m \in M$ the annihilator ideal $\operatorname{Ann}_R(m)$ is prime.

Fields

7. (10 points) Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$ be the splitting field for $f(x) = x^8 - 2 \in \mathbb{Q}[x]$ inside \mathbb{C} . Let $\theta_8 = e^{\frac{2\pi i}{8}}$. The Galois group of K/\mathbb{Q} is generated by $\sigma \in \operatorname{Gal}(K/\mathbb{Q}(i))$ with $\sigma(\sqrt[8]{2}) = \sqrt[8]{2}\theta_8$ and τ which is the restriction of complex conjugation to K. The Galois group has presentation

$$\langle \sigma, \tau : \sigma^8 = 1, \tau^2 = 1, \tau \sigma \tau^{-1} = \sigma^3 \rangle$$

Show that $\mathbb{Q}(\sqrt{2}i)/\mathbb{Q}$ is a Galois subextension of K/\mathbb{Q} and $K/\mathbb{Q}(\sqrt{2}i)$ has Galois group isomorphic to Q_8 .

8. (10 points) Prove or disprove: $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of some cyclotomic field over \mathbb{Q} .