Ph.D. Comprehensive Examination — Part I 9:00-12:00, Wednesday June 10, 2020

The comprehensive exam consists of two parts. Part I contains mandatory problems and covers basic material, while Part II covers slightly more advanced materials at graduate course level.

This is **Part I**, for which a minimum of **80% is required to pass**. You may use a calculator, but your calculator **must NOT** be capable of wireless communication or capable of storing and displaying large text files. **NO other aids** are allowed.

Do **all** of the following questions.

Calculus:

C1. We know that the derivative of $\sin x$ is $\cos x$. Observe that (i) $\sin x$ is odd and $\cos x$ is even; (ii) both $\sin x$ and $\cos x$ are 2π -periodic functions; and (iii) $|\sin x| \le 1$ and $|\cos x| \le 1$ both hold. The above observations for $\sin x$ and $\cos x = (\sin x)'$ may make one wonder if they can be generalized, leading to the following conjectures:

Assume that f(x) is continuously differentiable in \mathbb{R} .

- (I) If f(x) is odd, then f'(x) is even.
- (II) If f(x) is p-periodic (i.e., f(x+p) = f(x) for all $x \in \mathbb{R}$, so is f'(x).
- (III) If $|f(x)| \leq M$ for all $x \in \mathbb{R}$, then there also holds $|f'(x)| \leq M$.

Prove or disprove (by counterexample) the above (I)-(III). The answer to each of them should be just one line or two, so if you run into complicated arguments, you must be in a wrong track.

- C2. Let $f(x) = x^2 e^{-x}$. Sketch the graph of this function, clearly identifying those important features: monotonicity and maximum/minimum points (if any), cancavity and inflection points (if any), asymptotes (if any).
- C3. Consider the linear system Ax = b where $A = (a_{ij})_{m \times n}$ is an $m \times n$ real matrix, $x = (x_1, \dots, x_n)^T$ is the unknown vector, and $b = (b_1, \dots, b_n)^T$. A least square solution to Ax = b is a vector x^* in \mathbb{R}^n at which the function $f(x) = ||Ax b||^2$ is minimized, where $|| \cdot ||$ is the Euclidean norm.
 - (a) Derive the equations that determine x^* and express them in terms of the coefficient matrix A and the constant vector b. You need to show your derivation, not simply writing down the equation).
 - (b) Give condition(s) on the matrix A that ensures/ensure there exists a unique least square solution for Ax = b.

Your will be required to revisit this problem by linear algebra approach (geometric approach) in Part L below.

C4. In probability and statistics, there is the important identity

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1$$

Prove this identity by relating it to the improper double integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx \, dy$$

C5. The gamma function is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

(a) For nonnegative integer n, find $\Gamma(n+1)$; (b) Find $\Gamma(1/2)$.

Linear Algebra:

L1. Using the properties of eigenvectors of a symmetric matrix associated to different eigenvalues, construct a 2×2 matrix A which has an eigenvalue 5 and an associated eigenvector $\begin{bmatrix} 1\\2 \end{bmatrix}$, and for which no entry is zero.

L2. Let
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$$

- (a) Find all eigenvalues and the associated eigenvectors of A;
- (b) Is A diagonalizable? If no, explain why; if yes, diagonalize it.
- (c) Find an orthogonal basis for the kernel of A, Ker (A).
- (d) Find a basis for the range of A, range (A).
- L3. Consider the linear system Ax = b again where $A = (a_{ij})_{m \times n}$ is an $m \times n$ real matrix, $x = (x_1, \dots, x_n)^T$ is the unknown vector, and $b = (b_1, \dots, b_n)^T$.
 - (a) State a condition on b in terms of the column space of A (i.e., subspace spanned by the column vectors of A, also called range of A, denoted by range (A)) under which the system Ax = b has a solution.
 - (b) A least square solution to Ax = b is a vector x^* in \mathbb{R}^n at which the function $f(x) = ||Ax b||^2$ is minimized. Give an alternative description for x^* in terms of the column space range(A) and vector b with respect to the Euclidean orthogonality and distance.
 - (c) Based on (a)-(b) and using the notions of orthogonal projection and complement, derive the equation that determines x^* , expressed in terms of the coefficient matrix A and the constant vector b (which is also referred to as the normal system of Ax = b). You need to show your derivation, not simply writing down the equation).

Ordinary Differential Equations:

- O1. Find the general solution to $\frac{dx}{dt} = rx(x-1)(x+1)$ in implicit form.
- O2. Use an appropriate substitution to solve the initial value problem $\frac{dx}{dt} = (t+x)^2$, x(0) = 1.
- O3. Find the general solutions of the second order linear ODEs $u''(t) + 4u(t) = 3\sin(2t) + e^{-2t}$

Numerical Methods:

Explicitly show how you obtain your numerical answers in the following.

- N1. Assuming you are explaining to your non-mathematically inclined acquaintances:
 - (a) What does it mean for a problem to be well-posed?
 - (b) What does it mean for an algorithm to be stable ?
- N2. Do 3 iterations of Newton's method starting with $x_0 = 2$ to solve $\sqrt{x} = 2 \cos x$.
 - (a) What is the backward error for your third iterate?
 - (b) Estimate the forward error for your second iterate. Explain why you do or do not have any trust in this estimate.
- N3. Explain how best (give reasoning) to numerically evaluate the length of a vector in 3-dimensions when one of the components is either very large or if the components vary significantly in magnitude.
- N4. Given the following data for a function f(x) that you may assume is reasonably smooth with well-behaved derivatives:

х	f(x)
0.000	0.0000
0.500	0.5205
1.000	0.8427

- (a) Find an interpolating polynomial through the data.
- (b) Find an approximation to the derivative at x = 0.5 and x = 0.75.
- (c) Find an approximation to $\int_0^1 f(x) dx$.

Note: Better approximations will lead to higher marks.