Ph.D. Comprehensive Examination — Part I

Tuesday June 8, 2021, 9:00-am-12:00 noon (Toronto Time)

The comprehensive exam consists of two parts. Part I contains mandatory problems and covers basic material, while Part II covers slightly more advanced materials at graduate course level.

This is **Part I**, for which a minimum of 80% is required to pass. You may use a calculator, but your calculator **must NOT** be capable of wireless communication or capable of storing and displaying large text files. **NO other aids** are allowed.

Do **all** of the following questions.

Calculus:

- C-1 Let α , β and γ be three positive real numbers satisfying $\alpha < \beta < \gamma$. Let $f(x) = (e^x)^{\alpha}$, $g(x) = x^{\beta}$ and $h(x) = (\ln x)^{\gamma}$ for $x \in (0, \infty)$. Order these three functions in terms of the rates of approaching ∞ as $x \to \infty$, starting from the one that grows slowest. You have to justify your ordering (show your work/analysis for your ordering).
- C-2 Assume that b(t) is Riemann integrable (not necessary differentiable) on $[-r, \infty)$ and a, r > 0 are positive real numbers. Let $u(t) = \int_0^r e^{-a\theta} b(t-\theta) d\theta$. Find a linear ordinary differential equation satisfied by u(t).
- C-3 Evaluate the iterated integral $\int_0^\infty \int_{x^2}^\infty x e^{-y^2} dy dx$.
- C-4 Consider the power series $\sum_{n=1}^{\infty} \frac{[-(x-1)]^{n-1}}{2^{3n}}$.
 - (a) Find the interval of convergence.
 - (b) Find a formula for the sum function of this power series in the convergence interval.
- C-5 Green's Theorem and Divergent Theorem in the plane.
 - (a) State the Green's Theorem for $\vec{F}(x,y) = (P(x,y), Q(x,y))$ in the plane in terms of the tangent along a closed curve C (including all conditions and the conclusion).
 - (b) State the Divergence Theorem in the plane for $\vec{F}(x, y)$ in the domain bounded by C in (a).
 - (c) Using the Green's Theorem and the relation between the tangent and the normal on the curve C to prove the Divergence Theorem.
 - (d) In the 1-dimension case, which theorem in calculus of single variables corresponds to the Divergence Theorem? Explain why you think so.

Linear Algebra:

L-1 Let $A = (a_{ij})_{n \times n}$ be a real and symmetric matrix.

- (a) State as many criteria as you can for A to be positive definite.
- (b) Determine whether or not the following matrix is positive definite: $A = \begin{bmatrix} 1 & 3 & 1 \\ 3 & 0 & -3 \\ 1 & -3 & -1 \end{bmatrix}$.

L-2 Let W be the subspace in \mathbb{R}^3 spanned by $v_1 = (1, 2, 3)^T$.

- (a) Find the orthogonal complement W^T of W with respect to the standard inner product.
- (b) Geometrically interpret W^T .
- (c) Find an orthonormal base for W^T .
- (d) Find the orthogonal decomposition of the vector v = (1, 1, 1) with respect to W and W^T .
- (e) Find the Euclidean distance of v = (1, 1, 1) to W^T .

L-3 Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 6 & 3 & 1 \end{bmatrix}$. Determine whether or not the vector v = (1, -10, 5) is in the eigenvector

space corresponding to the eigenvalue 1.

Differential Equations:

- D-1 Use an appropriate substitute to find the general solution to the ODE $x^2 \frac{dy}{dx} = x^2 + xy y^2$.
- D-2 When considering heat equation $u_t(t, x) = ku_{xx}$, t > 0 in the 1-D bounded domain (interval) $x \in [0, L]$ with homogeneous Neumann boundary condition $u_x(t, 0) = 0 = u_x(t, L)$, the method of separation of variables is typically applied, leading to the following ODE problem:

$$\begin{cases} \phi''(x) = -\mu\phi(x), x \in (0, L); \\ \phi'(0) = 0 = \phi'(L). \end{cases}$$
(1)

Find the conditions (show your work) on the parameter μ such that this ODE problem has nontrivial ($\phi \neq 0$) solutions.

D-3 Solve the following linear ODE system with given initial values:

$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5t \\ e^{2t} \end{pmatrix}, \quad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Numerical Methods:

N-1 On Newton's Method.

- (a) Derive Newton's method for solving an algebraic equation f(x) = 0.
- (b) For the particular case $f(x) = 2x^6 13x^4 + 24x^2 9$, apply Newton's method starting with $x_0 = 0.5$. Conduct 2 steps of the method, and obtain x_1 and x_2 .
- (c) How accurate is your estimate for the root?
- (d) Repeat the method, now starting with $x_0 = 2.0$. How accurate is your estimate of the root?

N-2 Let A be an invertible $n \times n$ matrix and let b, Δb be $n \times 1$ matrices. Let x, Δx be unknowns.

(a) Given the equations

$$Ax = b {,} (1)$$

$$A(x + \Delta x) = b + \Delta b , \qquad (2)$$

prove that when b changes by an amount Δb , then the change in x, namely Δx , satisfies

$$\frac{\|\Delta x\|}{\|x\|} \le \kappa(A) \frac{\|\Delta b\|}{\|b\|},\tag{3}$$

where $\kappa(A) = ||A|| ||A^{-1}||$.

- (b) What name is given to the quantity $\kappa(A)$? Describe *briefly* (2 lines) the interpretation of equation (3) when κ is small, and when κ is large.
- N-3 Consider the function

$$f(x) = \frac{1}{2+x} \; .$$

- (a) Compute the first three terms of the Taylor series for f(x) around x = 0.
- (b) Compute the remainder term $R_2(\xi)$.
- (c) For the case x = 1, obtain ξ explicitly.
- (d) Use the series to approximate the integral

$$\int_0^1 \frac{dx}{2+x} \; ,$$

and verify that the remainder term can be used to bound the error.