
WESTERN UNIVERSITY DEPARTMENT OF MATHEMATICS LONDON, ONTARIO, CANADA

WINTER 2018

ELEMENTARY NUMBER THEORY – Mathematics 3150b (001-1179)

J. Ellenberg

T. Tao Y. Zhang K. Wickelgren B

Instructor:	Ján Mináč (also known as Professor Maniac ☺)
Email:	minac@uwo.ca / and / jminac1811@gmail.com
Office Hours:	Will be discussed in class, but this will not be the main topic of the class. (My
	indoor office is in Middlesex College. The number of my office is a 32 nd prime
	number. Exercise 0: Find the number of my office. (You can find the solution in
	the rotunda in Middlesex College.) I also use the university campus as a large,
	outdoor office. (2)
Office Telephone:	(519) 661-2111, extension 86519
Class Times:	MWF 11:30 a.m. – 12:30 p.m.
Class Location:	Middlesex College room 107
Prerequistes:	Some very basic knowledge of linear algebra is useful. Also an interest in the
_	magic of mathematics is very welcome. The courage to try and write neat proofs
	will be encouraged. If you are unsure about the background, please speak with me
	or email me.
Evaluation:	Will be discussed in class.
Some Questions Whose	What are the prime divisors of the numbers $n^2 + 1$, $n^2 - 5$, with n a natural number?
Answers we Master:	What are solutions of the equation $x^2 + y^2 = z^2$ in natural numbers?
Fun:	During the entire semester. ©
Number Theory Claim:	Number theory is delightful magic, filled with surprises and interesting,
_	challenging problems. (This claim will be proved in class.)
The Art of Studying and	We shall discuss and practice.
Research:	

Textbook: *An Introduction to the Theory of Numbers*, by Ivan M. Niven, Herbert S. Zuckerman, Hugh L. Montgomery, Fifth Edition, John Wiley & Sons, Inc., 1991, ISBN 0-471-62546-9.

Note: I will request that the Taylor Library place their copy of this book (Fifth Edition) on 2-hour reserve loan to be available for students taking this course.

This is a great book! It is available at the Western Book Store. (This book is optional – recommended but not required, as the main source of information will be your lecture notes.) This book contains a wealth of charming and beautiful mathematics explained in a clear and friendly way. We shall first concentrate on chapters 1, 2, 3, 4, 5, 8 and 9. We shall also review a wealth of literature, and enjoy a great number theory web site maintained by Professor Keith Matthews (http://www.numbertheory.org/keith.html). Then we shall play with algebraic

numbers and ideal numbers; and view them as secret factors of ordinary numbers. We shall split "usual" primes into "complex primes". What fun! What a source of pleasant surprises!

Course Outline: The fundamental theorems of arithmetic, distribution of primes, congruences, Fermat's Little Theorem, Wilson's Theorem, the quadratic reciprocity law, primitive roots modulo powers of prime numbers, the sums of squares, Riemann zeta functions, elliptic curves, Diophantine equations, arithmetic functions, and some *ad hoc*, interesting and fascinating material enhancing these basic subjects.

L. Euler

K. Murty

A. Granville

J. Labute

R. Murty

This will be the core of the course which we shall try to develop with many details and we shall aim at a full understanding of the basics.

In the other part of this course we shall bravely make an attempt to understand the "big picture" and the latest developments such as the Wiles-Taylor proof of Fermat's Last Theorem, the Langlands program, Green and Tao's theorem on primes in arithmetical sequences, Y. Zhang's theorem on infinite numbers of pairs of primes whose difference is less than 70,000,000, and later refinements, and topics in arithmetic geometry. This will often be done with bold strokes of our brushes, aiming our imagination and letting it loose; as well as freeing us from worries about details. Perhaps some of you will decide to climb this hill or that hill, or to examine certain deep topics with a microscope and the obsession that such an examination may require.

Remark 1. If Leonhard Euler had been Canadian, then all five of these great mathematicians shown above would be Canadian!

Remark 2. One reason why humankind may be proud today is the development of number theory. In the past only a few, usually the most outstanding mathematicians, devoted their energy to this fascinating topic. Today this theory is becoming quite popular and remarkable success was obtained in recent years. I will try to systematically develop parts of the theory and to preserve some charm, beauty, and romantic dreams of the subject.

When I was a teenager, I often daydreamed and lived in my own world full of fantasy and magic. Sometimes prime numbers snuck into this world. They were puzzling and fascinating. And then I learned that there were others dreamers called mathematicians, who explore this fantasy world in a detailed way. And what a world this is! I long to share this world with you.

Further Information:

Academic dishonesty: Scholastic offences are taken seriously and students are directed to read the official policy: https://www.uwo.ca/univsec/pdf/academic policies/appeals/scholastic discipline undergrad.pdf.

Accessibility Statement: Please contact the course instructor if you require material in an alternate format or if you require any other arrangements to make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at 661-2111, extension 82147 for any specific question regarding an accommodation.

Support Services: Learning skills counsellors at the Student Development Centre (http://www.sdc.uwo.ca/) are ready to help you improve your learning skills. Students who are in emotional / mental distress should refer to Mental Health@Western for a complete list of options about how to obtain help. Additional student-run support services are offered by the University Students' Council (https://westernusc.ca/). The website for Registrarial Services is: http://www.registrar.uwo.ca.

Eligibility: You are responsible for ensuring that you have successfully completed all course prerequisites and that you have not taken an antirequisite course. Unless you have either the requisites for this course or written special permission from your Dean to enroll in it, you may be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from a course for failing to have the necessary prerequisites.